This page has been robot translated, sorry for typos if any. Original content here.


СОЛНЦЕ - ЧЁРНАЯ ДЫРА - СВЕТЯЩИЙСЯ ШАР ИЛИ ОБЫЧНОЕ СОЛНЦЕ

Оставьте комментарий

  Черная дыра в решении Керра вращается. Ее ось вращения определяет особое направление в пространстве , так что пространство - время оказывается искривленным по- разному в зависимости от угла к оси вращения. Геометрия пространства осесимметрична, а не сферически симметрична как в черной дыре Шварцшильда. Это усложнение приводит к радикальным изменениям характера круговых орбит лучей света.

  Чтобы разобраться в расположении орбит света вокруг керровской черной дыры, представим себе, что мы смотрим вдоль оси вращения в сторону черной дыры на лучи света, идущие к ней в экваториальной плоскости.

Орбиты вокруг света керровской черной дыры (в ее экваториальной плоскости).

Рис.4 Орбиты вокруг света керровской черной дыры (в ее экваториальной плоскости). Те лучи света, которые проходят далеко от вращающейся черной дыры, отклоняются лишь на малые углы. Луч света, приближающийся к дыре с требуемым значением прицельного параметра, может направиться по круговой орбите вокруг этой дыры. Но в экваториальной плоскости есть две неустойчивые круговые орбиты света. Внешняя орбита содержит лучи с обратным вращением, а внутренняя-с прямым.

  Как видно из рис.4, лучи света, проходящие вдали от дыры (т.е. при больших значениях прицельного параметра), отклоняются лишь немного. Когда прицельный параметр имеет строго определенное значение, луч света и в данном случае может пойти по круговой орбите вокруг черной дыры. Однако теперь появляются две возможности. Если луч света приближается к черной дыре с одной стороны, он может быть захвачен на неустойчивую круговую орбиту, по которой он обращается в направлении, противоположном направлению вращения дыры. Такая круговая орбита с обратным вращением расположена на большем расстоянии от черной дыры, чем фотонная сфера в шварцшильдовском случае.

  Если же луч света приближается к черной дыре с другой стороны, он и может быть захвачен на неустойчивую круговую орбиту, но теперь луч обращается в том же направлении, в каком вращается сама дыра. Такая круговая орбита с прямым вращением расположена намного ближе к дыре - ближе, чем фотонная сфера в шварцшильдовском случае.

  Анализ поведения лучей света в экваториальной плоскости показывает, что существуют две круговые орбиты - внутренняя, по которой свет обращается в ту же сторону, в которую вращается черная дыра, и внешняя, по которой свет обращается в противоположную сторону. Можно сказать, что, когда шварц-шильдовская черная дыра приобретает момент количества движения, фотонная сфера “расщепляется” на две. Между орбитами с прямым и обратным вращением в экваториальной плоскости имеется множество неустойчивых круговых орбит для световых лучей. Эти орбиты соответствуют световым лучам, приходящим к черной дыре с разных направлений, не лежащих в экваториальной плоскости.

  Для того чтобы разобраться, что же происходит вне экваториальной плоскости, рассмотрим световые лучи, приближающиеся к черной дыре параллельно ее оси вращения. На рис.5 изображены траектории таких лучей в окрестностях предельной черной дыры (М = а), вычисленные Ч. Т. Каннингэмом.

Орбиты света вокруг керровской черной дыры (параллельно оси вращения).

Рис.5 Орбиты света вокруг керровской черной дыры (параллельно оси вращения). Те лучи света, которые проходят далеко от вращающейся черной дыры, отклоняются лишь на малые углы. Для луча света, пришедшего к дыре параллельно ее оси вращения, существует только одна возможная круговая орбита. (Диаграмма построена для предельного решения Керра, когда М = а.)

  Если на рис.4 изображен “вид сверху”, а именно орбиты, лежащие в экваториальной плоскости, то рис.5 - это “вид сбоку” на орбиты световых лучей в плоскости, проходящей через ось, вокруг которой вращается черная дыра.

  Как всегда, лучи света, проходящие вдалеке от черной дыры, отклоняются лишь на малые углы. Лучи, прицельные параметры которых меньше (т. е, которые проходят ближе к оси вращения), отклоняются сильнее. Теперь среди всех значений прицельного параметра существует лишь одно, при котором свет захватывается на круговую орбиту вокруг дыры (рис.5), Итак, для лучей, подходящих к черной дыре параллельно ее оси вращения, существует только одна неустойчивая круговая орбита. Эта орбита находится от черной дыры на расстояний, промежуточном между расстояниями для орбит в экваториальной плоскости с прямым и обратным вращением.

  Итак, вокруг черной дыры существует множество различных неустойчивых круговых орбит световых лучей. Самая далекая из них - это круговая орбита с обратным вращением в экваториальной плоскости. Самая близкая - круговая орбита с прямым вращением, опять-таки в экваториальной плоскости. Между этими двумя пределами находятся различные возможные орбиты лучей света, подошедших к черной дыре под разными углами. Для каждого данного угла будут быть орбиты, как с прямым, так и с обратным вращением, за исключением тех лучей, которые пришли параллельно оси вращения. Для луча света, подошедшего к черной дыре параллельно ее оси вращения, имеется лишь одна круговая орбита.

  Если черная дыра вращается медленно, то разброс круговых орбит невелик. Все возможные орбиты расположены около друг друга над внешним горизонтом событий на расстояниях, близких к положению шварцшильдовской фотонной сферы (которая существовала бы, если бы дыра не вращалась). При более быстром вращении черной дыры расстояние между орбитами в экваториалъной плоскости с прямым и обратным вращением становится больше. Соответственно увеличивается и разброс радиусов круговых орбит. Наибольший возможный разброс имеет место для предельной керровской черной дыры (когда М = а).

Разброс круговых орбит света вблизи быстро вращающейся черной дыры.

Рис. 6 Разброс круговых орбит света вблизи быстро вращающейся черной дыры. Все возможные круговые орбиты света вблизи керровской черной дыры (при а ~ 90%М) лежат внутри показанных здесь границ. Каждый луч света, идущий по круговой орбите, весьма сложным образом искривляется, оставаясь на поверхности эллипсоида внутри указанных границ.

  Для наглядного представления разброса круговых орбит света - вблизи вращающейся черной дыры удобнее всего изобразить огибающую поверхность всех таких орбит, состоящую из двух частей - внешней и внутренней.

  На рис. 6 изображено сечение огибающей поверхности всех возможных круговых орбит вокруг быстро вращающейся керровской дыры (а ~ 90% М). Каждый луч света движется весьма сложным образом вдоль поверхности эллиптического кольца внутри этих границ. При потере момента количества движения черной дырой по мере замедления вращения должен уменьшаться и объем, заключенный между частями огибающей поверхности. При полной остановке вращения вся огибающая поверхность превращается в фотонную сферу шварцшильдовской черной дыры.

  До сих пор мы касались лишь того, что происходит вне керровской черной дыры.

  Чтобы познакомиться с геометрией внутри такой дыры, представим себе, что мы послали световой луч с прицельным расстоянием меньше требуемого для захвата на круговую орбиту. На рис.7 изображены лучи света, подходящие к керровской черной дыре параллельно ее оси вращения, причем значение прицельного параметра меньше, чем требуется для захвата луча на круговую орбиту. Рис.7 и основан на расчетах Каннингэма. Отметим тот важный факт, что траектории этих лучей света вблизи центра черной дыры поворачивают и идут от сингулярности. Если вдали от керровской черной дыры гравитация вызывает притяжение и затягивает всё тела вовнутрь, то вблизи сингулярности она действует как сила отталкивания и стремится вытолкнуть их наружу! Те лучи света, которые нацелены прямо на кольцо, отклоняются сильнее всего - такие лучи буквально отскакивают от черной дыры. Эта “отталкивательная” природа керровской сингулярности означает, что на некотором расстоянии от центра дыры гравитационное отталкивание уравновешивает гравитационное притяжение.

Траектории лучей света внутри керровской черной дыры.

  Рис. 7 Траектории лучей света внутри керровской черной дыры. Те лучи света, которые направлены на вращающуюся черную дыру при меньшем, чем для круговой орбиты, значении прицельного параметра, попадают внутрь дыры. Вид траекторий лучей света глубоко внутри дыры показывает, что сингулярность отталкивает световые лучи. Вблизи сингулярности лучи света испытывают действие антигравитации. (Схема построена для предельного решения Керра, когда М = а.)

  Значит, в этой нейтральной области снова скажутся возможными круговые орбиты света! На рис.8 представлены границы всех возможных круговых орбит света глубоко под внутренним горизонтом событий. В отличие от внешних световых орбит вокруг черной дыры, во внутренней области могут быть не только неустойчивые, но и устойчивые орбиты. Поэтому сингулярность керровской черной дыры окружена световыми лучами.

  Чтобы исследовать самые глубокие области керровской черной дыры, вообразим, что мы посылаем лучи света параллельно оси вращения и очень близко к ней, так что значение прицельного параметра для этих лучей света меньше, чем необходимое для попадания в кольцевую сингулярность. Поэтому лучи света, идущие по оси вращения или близко к ней, пройдут сквозь кольцо в отрицательное пространство.

  Рассмотрим прохождение лучей света сквозь сингулярность, отметим, прежде всего, что лучи отклоняются в сторону от краев кольца.

Разброс маятниковых круговых орбит света в отрицательном пространстве (r < 0)

Рис. 8. Разброс маятниковых круговых орбит света в отрицательном пространстве (r < 0). Все возможные маятниковые круговые орбиты вблизи сингулярности керровской черной дыры (при а = 90%М) лежат внутри границ, показанных на схеме. Внутри этой области отрицательного пространства лучи света отскакивают туда и обратно по эллипсоидальной поверхности.

  Это связано с гравитационным отталкиванием вблизи сингулярности. Часть лучей сета согласно рис.7 может нырнуть на мгновение в отрицательное пространство и вернуться оттуда. Они образуют маятниковые круговые орбиты и в отрицательном пространстве керровской черной дыры – рис.8.

  Наконец, рассмотрим луч света, приходящий к керровской сингулярности со стороны отрицательной Вселенной. Те из них, которые идут по оси вращения или очень близко к ней, непосредственно попадают в положительное пространство сквозь кольцевую сингулярность. Однако, как показано на рис.9 , все лучи света, обладающие при сближении с черной дырой большими значениями прицельного параметра, отталкиваются от нее. При взгляде из отрицательного пространства дыра оказывается источником антигравитации. Она все отталкивает от себя и ничего не притягивает. Вот почему отрицательная Вселенная иногда называется “миром антигравитации”.

Лучи света, идущие от отрицательного пространства.

Рис.9 Лучи света, идущие от отрицательного пространства. Приближающиеся к вращающейся черной дыре из отрицательного пространства лучи света отталкиваются этой дырой. В отрицательном пространстве вращающаяся черная дыра является источником антигравитации. (Схема построена для предельного решения Керра, когда М = а.)

  Теперь, после того как мы подробно рассмотрели ход различных траекторий лучей света вблизи керровской черной дыры, можно представить себе, как будет выглядеть вращающаяся черная дыра для удаленного астронома. С какой стороны бы не смотрели астрономы с Земли, с космической станции – с любого направления и расстояния черная дыра - Солнце внешне будет выглядеть как светящийся шар .

  Вывод 1. Материальные объекты, ускоряясь до скорости света при падении на черную дыру – Солнце, превращаются в энергию - излучение по формуле Энштейна e=mc2 и создают, согласно решения Керри для черных дыр, светящийся шар радиусом 696 тысяч км., то есть наше обычное Солнце.

Авторы: Гордеев С. И. , Волошина В. Н. 28-07-2003



НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

stop war in Ukraine

ukrTrident

stand with Ukraine