special
  •  #StandWithUkraine Ukraine flag |
  • ~491080+1210
     Enemy losses on 814th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.

Математичне програмування - Наконечний С.І.

8.6.1. Опуклі й угнуті функції

Наведемо основні означення та теореми. Нехай задано n-вимірний лінійний простір Rn. Функція , що задана на опуклій множині , називається опуклою, якщо для будь-яких двох точок та з множини X і будь-яких значень виконується співвідношення:

. (8.27)

Якщо нерівність строга і виконується для , то функція називається строго опуклою.

Функція , яка задана на опуклій множині , називається угнутою, якщо для будь-яких двох точок та з множини X і будь-якого справджується співвідношення:

. (8.28)

Якщо нерівність строга і виконується для , то функція називається строго угнутою.

Слід зазначити, що опуклість та угнутість функції визначаються лише відносно опуклих множин у , оскільки за наведеними означеннями разом з двома будь-якими точками та множині X належать також точки їх лінійної комбінації: для всіх значень , що можливо лише у разі, коли множина X є опуклою.

Теорема 8.2. Нехай — опукла функція, що задана на замкненій опуклій множині X, тоді будь-який локальний мінімум на цій множині є і глобальним.

Доведення. Допустимо, що в точці функція має локальний мінімум, тоді як глобальний мінімум досягається в точці , отже, виконуватиметься нерівність . Через те що — опукла функція, для будь-яких значень справджується співвідношення:

. (8.29)

Множина Х опукла, тому точка при також належить цій множині. Враховуючи, що , нерівність (8.29) матиме вигляд:

;

.

Значення можна вибрати так, щоб точка була розташована як завгодно близько до . Тоді отримана остання нерівність суперечить тому, що — точка локального мінімуму, оскільки існує як завгодно близька до неї точка, в якій функція набуває меншого значення, ніж у точці . Тому попереднє допущення неправильне. Теорему доведено.

Теорема 8.3. Нехай — опукла функція, що визначена на опуклій множині Х, і крім того, вона неперервна разом з частинними похідними першого порядку в усіх внутрішніх точках Х. Нехай — точка, в якій . Тоді в точці досягається локальний мінімум, що збігається з глобальним.

Доведення. З рівності (8.12) для знаходимо:

;

;

.

Через те що існують частинні похідні першого порядку, функцію можна розкласти в ряд Тейлора:

,

де — градієнт функції f, обчислений у точці , . Тоді:

.

Переходимо до границі при , отримаємо:

. (8.30)

Ця умова виконується для будь-яких внутрішніх точок Х1 та Х2 і є необхідною і достатньою умовою опуклості f(X).

Якщо функція f(X) неперервна разом з частинними похідними першого порядку і угнута на множині Х, то аналогічно попередньому результату маємо:

.

Припустимо, що Х0 — довільна точка множини Х, тоді, взявши , , а також за умовою теореми , в нерівності (8.30) маємо:

.

Отже, опукла функція f(X) досягає свого глобального мінімуму на множині Х у кожній точці, де . Теорему доведено.

Як наслідок теореми можна показати, що коли Х замкнена, обмежена знизу, опукла множина, то глобального максимуму опукла функція f(X) досягає на ній у одній чи кількох точках (при цьому допускається, що в точці Х значення функції скінченне). Застосовуючи за розв’язування таких задач процедуру перебору крайніх точок, можна отримати точку локального максимуму, однак не можна встановити, чи є вона точкою глобального максимуму.

Для угнутих функцій отримані результати формулюють так. Нехай f(X) — угнута функція, що задана на замкненій опуклій множині . Тоді будь-який локальний максимум f(X) на множині Х є глобальним. Якщо глобальний максимум досягається в двох різних точках множини, то він досягається і на нескінченній множині точок, що лежать на відрізку, який сполучає ці точки. Для строго угнутої функції існує єдина точка, в якій вона досягає глобального максимуму.

Градієнт угнутої функції f(X) у точках максимуму дорівнює нулю, якщо f(X) — диференційовна функція. Глобальний мінімум угнутої функції, якщо він скінченний на замкненій обмеженій зверху множині, має досягатися в одній чи кількох її крайніх точках за умови скінченності функції f(X) у кожній точці цієї множини.



 

Created/Updated: 25.05.2018