special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2027119

ТЕПЛОВОЙ АККУМУЛЯТОР ЭНЕРГИИ

ТЕПЛОВОЙ АККУМУЛЯТОР ЭНЕРГИИ

Имя изобретателя: Айрапетян Симон Апресович; Закарян Гегам Ашотович 
Имя патентообладателя: Айрапетян Симон Апресович; Закарян Гегам Ашотович
Адрес для переписки: 
Дата начала действия патента: 1992.07.27 

Использование: при аккумулировании тепла, используемого для отопления, горячего водоснабжения, получения электроэнергии. Сущность изобретения: тепловой аккумулятор содержит резервуар 1, заполненный вразброс твердой аккумулирующей средой 3, в качестве которой могут быть выбраны каменные породы, негорючие твердые отходы, вскрытие породы горнодобывающей промышленности, а и теплообменник 2, подключенный разрядной стороной к источнику 5 солнечной энергии, а разрядной стороной - к паросиловой части солнечной электроэнергии. При этом разрядная сторона теплообменника образована дополнительно размещенным в упомянутой аккумулирующей среде нагревателем, заполненным теплоносителем.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к хранению тепла и может быть использовано для получения электроэнергии, горячего водоснабжения, отопления и т.д.

Известны тепловые аккумуляторы энергии с подземными аккумулирующими резервуарами, например, в соляных полостях, которые практически герметичны и могут быть использованы для аккумулирования сжатого воздуха без облицовки [1].

Известны аккумуляторы солнечной энергии, резервуаром которого является полость в скальных породах, содержащая 100 тыс.м3 воды, имеющая кольцевую форму и нетеплоизолированная. Прилежащие к полости слои скальной породы принимают участие в тепловом аккумулировании энергии [2].

Известны и аккумуляторы с твердой аккумулирующей средой в виде насадок (матриц), через которые проходят и омывают ее попеременно два газовых потока. Насадки располагают в шахматном или сотовом порядке [3].

Наиболее близким техническим решением является тепловой аккумулятор солнечной установки на 10 МВт в г.Барстоу (США). Аккумулирующий резервуар выполнен в виде цилиндрического сосуда объемом 3058 м3, аккумулирующая среда выполнена из гранитной щебенки в количестве 6100 т, а в качестве теплоносителя используют масло в объеме 712 м3. Сосуд аккумулятора заряжается острым паром при температуре 510оС, который затем охлаждается до 348о С, конденсат покидает систему при 226о С. В режиме разрядки питательная вода с температурой 127о С поступает в разрядный теплообменник, где образуется слегка перегретый пар, имеющий температуру 277о С и давление 2,7 МПа, который направляется к турбине [4].

Недостатком данной станции является то, что она не может работать как сезонный аккумулятор, кроме того, данный тип аккумулятора требует большого количества масла в качестве теплоносителя.

В данном изобретении решается задача создания теплового аккумулятора энергии с использованием дешевых твердых аккумулирующих материалов, способных отдавать тепло в течение длительного времени.

Достигается это тем, что в тепловом аккумуляторе энергии, содержащем резервуар, заполненный уложенным вразброс теплоаккумулирующим материалом, в качестве которого могут быть использованы каменные породы, негорючие твердые отходы, вскрышные породы горнодобывающей промышленности, а и теплообменник, подключенный зарядной стороной к солнечным коллекторам, а разрядной стороной - к паросиловой части солнечной электростанции, согласно изобретению, разрядная сторона теплообменника содержит дополнительно размещенный в теплоаккумулирующем материале нагреватель, а в качестве резервуара использована полость в грунте.

ТЕПЛОВОЙ АККУМУЛЯТОР ЭНЕРГИИ ТЕПЛОВОЙ АККУМУЛЯТОР ЭНЕРГИИ

На фиг.1 изображен общий вид аккумулятора; на фиг.2 - схема электростанции, работающей на солнечном аккумуляторе.

Тепловой аккумулятор энергии состоит из резервуара 1, в качестве которого используют естественные полости в грунте, искусственные котлованы, заброшенные карьеры и т.д. В резервуаре 1 установлен теплообменник 2, выполненный, например, в виде спирального трубопровода, заполненного минеральным или синтетическим маслом в качестве теплоносителя. Резервуар 1 заполнен твердым аккумулирующим материалом 3, в качестве которого используют гранитный, базальтовый, туфовый и другие отходы камнедобывающей и обрабатывающей промышленности, битый кирпич, битое стекло и любые другие негорючие отходы промышленности, а и вскрышные породы горнодобывающей промышленности. Стенки 4 резервуара 1 могут не бетонироваться и не изолироваться. Теплообменник 2 подключен к источнику энергии, в частности к солнечным коллекторам 5.

Работа теплового аккумулятора энергии показана на примере солнечной электростанции

Теплообменник 2 контура зарядки 6, проходя через твердый аккумулирующий материал 3 соединен с солнечными коллекторами 5. Контур разрядки 7, и проходящий через аккумулирующий материал 3, последовательно подключен к блокам пароперегревателя 8, испарителя 9, экономайзера 10. Блок пароперегревателя 8 соединен с паровой турбиной 11, вращение которой посредством генератора 12 преобразуется в электрическую энергию. К турбине 11 подключен и блок конденсации 13, соединенный через деаэратор 14 с экономайзером 10.

СТАНЦИЯ РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ

Поглощаемая параболическими концентраторами 5 солнечная энергия через теплообменник 2 контура зарядки 6 передает в аккумулирующий материал 3, нагревая его. При этом температура масла в теплообменнике 2 достигает 250-300о М. В районах с высоким дневным поступлением суммарной солнечной радиации, например, в г.Ереване, продолжительность солнечного сияния составляет свыше 2700 с в году, что обеспечивает сезонную аккумуляцию энергии в значительном объеме твердого материала. В таблицеприводятся данные о теплоаккумулирующих свойствах некоторых материалов.

В течение сезона температура аккумулирующего материала достигает 300о С, причем тепловая энергия от теплообменного трубопровода 2 передается по всему объему резервуара 1 посредством самого аккумулирующего материала 3, т. е. теплоносителем в данном случае является сам твердый материал. Расчеты показывают, что для сезонного аккумулирования резервуара объемом 100 тыс.м3 требуются солнечные концентраторы 5 общей площадью 40 тыс.м2.

Разрядку аккумулятора производят через контур разрядки 7 или раздельно или одновременно с зарядкой. Питательная вода с температурой около 100о С, проходя через блоки экономайзеpа 10, испарителя 9, пароперегревателя 8, через которые в обратном порядке проходит контур разрядки 7, доходит до состояния острого пара с температурой до 300о С, после чего поступает на турбины 11 генератора 12. Охлажденный до 120о С пар поступает в конденсатор 13, где охлаждается до 80о С. Вода из конденсатора 13 поступает в деаэратор 14, где очищается и снова поступает на экономайзер 10, и цикл повторяется. Одновременно аккумулятор можно использовать для горячего водоснабжения, отопления и т.д.

Таким образом, накопив тепловую энергию в течение летнего (весна-лето-осень), т.е. в дни высокой солнечной радиации, можно ее эффективно использовать в течение зимнего сезона.

ФОРМУЛА ИЗОБРЕТЕНИЯ

ТЕПЛОВОЙ АККУМУЛЯТОР ЭНЕРГИИ, содержащий резервуар, заполненный вразброс твердой аккумулирующей средой, в качестве которой могут быть выбраны каменные породы, негорючие твердые отходы, вскрышные породы горнодобывающей промышленности, а и теплообменник, подключенный зарядной стороной к источнику солнечной энергии, а разрядной стороной - к паросиловой части солнечной электростанции, и теплоноситель, отличающийся тем, что разрядная сторона теплообменника образована дополнительно размещенным в упомянутой аккумулирующей среде нагревателем, заполненным упомянутым теплоносителем, а в качестве резервуара использована полость в грунте.

Версия для печати
Дата публикации 14.02.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>