This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2031511

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ

Имя изобретателя: Климаш В.С.; Симоненко И.Г. 
Имя патентообладателя: Комсомольский-на-Амуре политехнический институт
Адрес для переписки: 
Дата начала действия патента: 1992.04.29 

Использование: компенсация реактивной мощности с обеспечением стабильности напряжения трехфазной сети. Сущность изобретения: в трансформаторно - тиристорный компенсатор реактивной мощности, содержащий трехфазный двухобмоточный вольтодобавочный трансформатор и трехфазный преобразователь амплитуды и фазы напряжения, выполненный на основе инвертора и выпрямителя, дополнительно введена система управления фазой выходного напряжения инвертора дополнительного канала для широтно - импульсного регулирования амплитуды этого напряжения.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к электротехнике, в частности к энергетической электронике, и может быть использовано для компенсации реактивной мощности и стабилизации напряжения трехфазной сети.

Известен компенсатор реактивной мощности [1], содержащий трехфазный трансформатор, первичная обмотка которого подключена к сети через блок конденсаторов, а вторичная обмотка - к тиристорному выпрямителю, нагруженному на индуктивность.

Недостатками устройства являются ограниченные функциональные возможности, а именно узкий диапазон регулирования реактивной мощности и нестабильности выходного напряжения. Необходимость ограничения диапазона и неполное в связи с этим использование устройства вызвано тем, что при глубоком регулировании посредством выпрямителя возникают большие искажения компенсационной составляющей тока и недопустимые отклонения напряжения нагрузки от напряжения сети. При этом возможны колебания выходного напряжения, связанные с изменением величины и характера нагрузки, а и изменением напряжения в сети.

Известен и компенсатор реактивной мощности [2], содержащий тиристорный выпрямитель, инвертор напряжения с синхронизированной с сетью системой управления, а и реактор, включенный между сетью и выходом инвертора, и конденсатор, включенный в звено постоянного тока. В этом устройстве тиристоры инвертора включаются таким образом, что основная гармоника его тока опережает на 90о сетевое напряжение, осуществляя тем самым компенсацию реактивной мощности.

Однако и этот компенсатор реактивной мощности имеет ограниченные функциональные возможности и низкое качество выходного напряжения. Он осуществляет частичную, зависящую от емкости конденсатора компенсацию, которая к тому же не регулируемая, так как тиристорный выпрямитель в стационарных режимах отключен и не воздействует на амплитуду компенсационной составляющей тока сети. Кроме того, устройство не обеспечивает стабилизацию напряжения нагрузки, что требует применения совместно с ним дополнительных устройств регулирования переменного напряжения.

Наиболее близким к предлагаемому по технической сущности является компенсатор реактивной мощности [3], который содержит последовательно соединенные три преобразователя: выпрямитель, инвертор напряжения с синхронизированной с сетью системой управления и тиристорно-реакторный регулятор переменного тока с синхронизированной с сетью системой управления. Первым сигналом управления, воздействующим на систему управления инвертором напряжения, обеспечивается опережение компенсационной составляющей тока сети относительно напряжения сети, а вторым сигналом управления, воздействующим на систему управления тиристорно-реакторным регулятором переменного тока, осуществляется регулирование действующего значения компенсационного тока и генерируемой реактивной мощности.

Недостатками устройства, взятого в качестве прототипа, прежде всего являются ограниченные функциональные возможности. Оно не обеспечивает полную компенсацию реактивной мощности и стабилизацию выходного напряжения в процессе изменения напряжения сети, а и величины и характера нагрузки. Кроме того, устройству свойствен режим прерывистого тока, при котором возникают большие искажения формы тока сети.

Цель изобретения - расширение функциональных возможностей, а именно обеспечение полной компенсации реактивной мощности и стабилизации выходного напряжения независимо от внешней характеристики сети, а и от величины и характера нагрузки.

Цель достигается тем, что в устройство введены трехфазный датчик напряжения нагрузки, блок сравнения, датчик реактивной мощности сети, два однофазных измерительных трансформатора тока и трехфазный трансформатор, вторичные обмотки которого включены между сетью и нагрузкой, а в двух фазах соединены последовательно с первичными обмотками однофазных измерительных трансформаторов тока, первичные фазные обмотки трехфазного трансформатора соединены в звезду и подключены к выходу трехфазного инвертора, вход выпрямителя подключен к сети, первый вход блока сравнения соединен с выходом датчика напряжения нагрузки, второй вход блока сравнения подключен к источнику задающего сигнала, выход блока сравнения соединен с вторым управляющим входом системы управления инвертором, первый управляющий вход которой подключен к выходу датчика реактивной мощности сети, причем система управления инвертором выполнена с возможностью управления амплитудой и фазой выходного напряжения инвертора.

Преимуществом устройства является то, что оно обеспечивает управление обобщенного вектора напряжения нагрузки по двум координатам - по амплитуде и по фазе. Возможность регулирования амплитуды обеспечивает стабилизацию напряжения, а регулирование фазы - компенсацию реактивной мощности. Применение датчиков и предложенных связей позволяет автоматизировать этот процесс. В устройстве отсутствует режим прерывистого тока, что обуславливает улучшение формы тока сети. Для полной компенсации среднестатистического коэффициента мощности промышленных нагрузок целесообразно применение трансформатора с отношением первичного и вторичного напряжений как 380/220. Такие трансформаторы выпускаются серийно и широко распространены, например сухие защищенные преобразовательные типа ТСЗП.

Тиристорные преобразователи со звеном постоянного тока и выпускаются серийно, что указывает на готовность предлагаемого устройства к промышленному производству и и может быть отнесено к преимуществам.

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ

На фиг. 1 изображена принципиальная схема силовой части компенсатора реактивной мощности; на фиг.2 и 3 - векторные диаграммы режимов работы устройства.

Предлагаемое устройство состоит из трансформатора 1, инвертора 2 с системой 3 управления, выпрямителя 4, датчика 5 напряжения нагрузки, блока 6 сравнения, нагрузки 7 и датчика 8 реактивной мощности сети с трансформаторами 9 и 10 тока. На векторных диаграммах (фиг.2 и 3) введены следующие обозначения: , , - напряжения сети, выгрузки и на выходе инвертора; , , - токи сети, нагрузки и на входе выпрямителя; 1,2,- фазы тока сети, напряжение выгрузки и напряжение инвертора относительно напряжения сети; Кт - коэффициент трансформации; - коэффициент передачи напряжения преобразователя со звеном постоянного тока.

Устройство работает следующим образом. Выходное напряжение формируется из напряжения сети и напряжения инвертора 2 ·Ufеjl , регулируемого по амплитуде изменением коэффициентов передачи и по фазе - изменением угла управления тиристоров . При помощи трансформатора 1 выходное напряжение инвертора 2 уменьшается в коэффициент трансформации Кт раз и прибавляется к напряжению сети . В результате этого напряжение на нагрузке 7 имеет вид

= + Kт··Ufejk(1)

Из выражения (1) и векторных диаграмм видно, что амплитуду и фазу вектора напряжения можно регулировать изменением коэффициента передачи и угла управления тиристорами . В предлагаемом устройстве изменение коэффициента передачи осуществляется в функции отклонения реактивной мощности сети от нулевого уровня, а изменение угла - в функции отклонения напряжения нагрузки 7 от заданного уровня, например равного номинальному напряжению сети.

При потреблении (генерации) устройством реактивной мощности сети сигнал с выхода датчика 8 реактивной мощности сети поступает на первый управляющий вход системы 3 управления инвертором 2 и увеличивает коэффициент передачи , увеличивая тем самым опережающий (отстающий) фазовый сдвиг 2, напряжения нагрузки 7относительно напряжения сети . При этом датчик 5 напряжения, осуществляя контроль напряжения нагрузки 7, подает сигнал обратной связи на блок 6 сравнения, на котором этот сигнал сравнивается с сигналом, пропорциональным заданному, например номинальному значению напряжения сети. Разность этих сигналов с выхода блока сравнения подается на второй управляющий вход системы 3 управления инвертором 2, которая, изменяя угол управления тиристорами , осуществляет регулирование амплитуды выходного напряжения. В результате такого амплитудного и фазового воздействия на выходное напряжение инвертора 2 вектор этого напряжения так формирует свой модуль и аргумент, что вектор напряжения нагрузки 7 является радиусом заданной окружности.

Использование устройства позволяет осуществлять полную компенсацию реактивной мощности в различных системах трехфазного тока и стабилизацию действующего значения выходного напряжения на заданном уровне независимо от жесткости внешней характеристики сети, а и величины и характера нагрузки.

ФОРМУЛА ИЗОБРЕТЕНИЯ

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ, содержащий инвертор напряжения, вход которого подключен к выходу выпрямителя и синхронизированную с сетью систему управления инвертором, отличающийся тем, что в него введены дополнительно трехфазный датчик напряжения нагрузки, блок сравнения, датчик реактивной мощности, два однофазных трансформатора тока и трехфазный трансформатор, вторичные обмотки которого включены между сетью и нагрузкой, а в двух фазах соединены последовательно с первичными обмотками однофазных измерительных трансформаторов тока, первичные фазные обмотки трехфазного трансформатора подключены одними выводами к выходу трехфазного инвертора, другие выводы объединены, вход выпрямителя подключен к сети, первый вход блока сравнения соединен с выходом датчика напряжения нагрузки, второй вход блока сравнения подключен к источнику задающего сигнала, выход блока сравнения соединен с вторым управляющим входом системы управления инвертора, первый управляющий вход которой подключен к выходу датчика реактивной мощности сети, а синхронизирующий вход подключен к сети, причем система управления инвертором выполнена с возможностью управления амплитудой и фазой выходного напряжения инвертора.

Версия для печати
Дата публикации 15.02.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

stop war in Ukraine

ukrTrident

stand with Ukraine